

Innovative Recycling Solutions Since 1946

Antimony & Tin Recovery from Lead Processing Joseph Grogan, CTO, Gopher Resource | June 2025

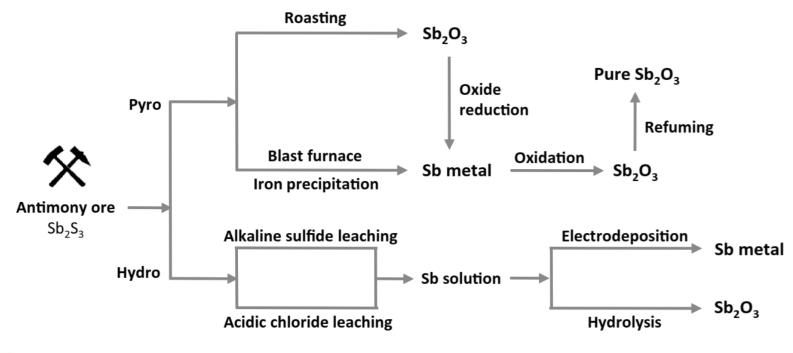
Antimony & Tin Relevance to Lead Industry

Important Components In Lead-Acid Battery Alloys

- Largest uses are Flame Retardants (50%), Lead-Acid Batteries (35%), and Plastics (7%)
- Main forms are antimony metal, antimony trioxide, and sodium antimonate
- Large growth in demand from Solar PV manufacturing
- Around 80k tons/yr production, down from over 150k tons/yr a decade ago
- Main global supply is from China, with 50% of mining and 80% of processing

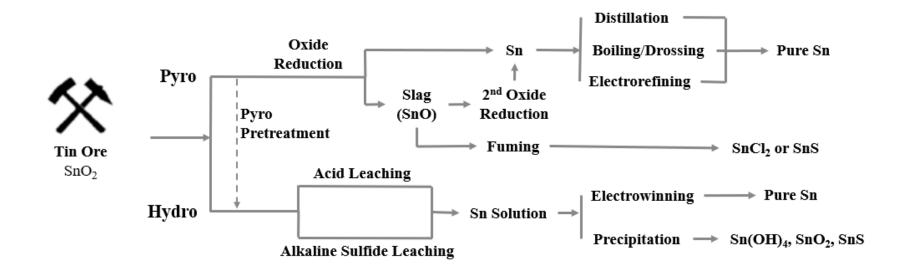
Tin 24

- Largest uses are Solder (50%), Chemicals (16%), Tinplate (12%), and Lead-Acid Batteries (7%)
- Main forms are tin alloys, pure tin, and chlorides
- Around 350k tons/yr produced
- Main global supply is from China, with 30% of mining and 50% of processing


Antimony Price

Driver To Diversify Due to Dramatic Global Supply Chain Upset

Antimony Processing


Pyro Processing Is More Common for Ores

Tin Processing

Pyro Processing Is More Common for Ores

Antimony Processing of Lead-Bearing Residues

Pyro Processing Is More Common, but Hydro Has Some Advantages

Pyrometallurgy

- More common processing route used to make antimony metal, and afterwards trioxide
- Technologies based around smelting and molten refining, including vacuum metallurgy
- Feedstocks can be wide-ranging materials with varying antimony or tin content
- More accepting of a variety of feed materials

Hydrometallurgy

- Used to make products like sodium antimonate or other salts
- Technologies are leaching-based, predominantly alkaline leaching
- Process can be selective in its recovery of antimony
- More commonly used in secondary byproducts than primary ore materials

Antimony Containing By-Products

Plastics Wastes Are An Untapped Opportunity for Antimony Recovery

Flame Retardants

- Antimony is paired alongside bromine to improve its performance
- Bromine makes antimony recovery difficult
- Development of large-scale antimony recovery from this market has been largely uneconomical
- Flame retardant plastics can have antimony concentration ranges 3 - 7%, or more

Lead-Acid Batteries

- Drosses (refining slags) and dusts are typically internally recycled back to their operations furnaces as rework
- Some drosses sold to 3rd parties for tin and/or antimony recovery
- Dross antimony concentration ranges are 3 - 20%
- Most technology is pyro-based and modified from flowsheets processing primary ores

SCRUM Process – Antimony & Tin Recovery From Wastes

Gopher Resource Won the 2023 BCI Innovation Award for Its New Technology

SCRUM Process – Antimony & Tin Recovery From Wastes

SCRUM Allows for Maximum Value Recovery from By-Products and Wastes

- Antimony is mostly recycled from the lead-acid battery market, of which some of the recycled volume is then entering into other markets (*e.g.*, flame retardants and solar PV cells)
- Antimony is not recycled from flame retardants in appreciable quantities
- Large amounts of Tin are lost to lead-acid battery end slags
- Abundant opportunities for collaboration to improve critical metals supply to the lead-acid battery industry
- Answers could be in joint development of projects and even economies of scale in processing lower volume/value materials

